ПРОДАЖА БЕТОНА В ЧЕБОКСАРАХ:
+7 8352 49-20-20
ТОВАРНЫЙ БЕТОН ОТ ПРОИЗВОДИТЕЛЯ
  ПРОДАЁМ БЕТОН В ЧЕБОКСАРАХ

КАЛЬКУЛЯТОР СТОИМОСТИ
РАССЧИТАТЬ СТОИМОСТЬ ДОСТАВКИ БЕТОНА
* Обязательные поля для заполнения

Ваши данные не будут переданы третьим лицам в соответствии с ФЗ 152
Дата и адрес доставки:
Марка бетона:
Необходимый объем:
42 куба
М-200
Пример: 7 917 7654321
* Ваше Имя :
* Ваш телефон :

Тепловые насосы принцип работы тепловых насосов


Принцип действия тепловых насосов

Имея в своем доме холодильники и кондиционеры, мало кто знает — принцип работы теплового насоса реализован именно в них.

Около 80% мощности, которую дает тепловой насос, приходится на тепло окружающей среды в виде рассеянного солнечного излучения. Именно его насос просто «перекачивает» с улицы в дом. Работа теплового насоса подобна принципу работы холодильника, вот только направление переноса тепла иное.

Проще говоря…

Чтобы охладить бутылку минеральной воды, Вы ее ставите в холодильник. Холодильник должен «забрать» у бутылки часть тепловой энергии и, согласно закону сохранения энергии, ее куда-то переместить, отдать. Холодильник переносит теплоту на радиатор, обычно расположенный на задней его стенке. При этом радиатор нагревается, отдавая свое тепло в помещение. Фактически он отапливает помещение. Это особенно заметно в маленьких минимаркетах летом, при нескольких включенных холодильниках в помещении.

Предлагаем пофантазировать. Предположим, что мы будем постоянно подкладывать теплые предметы в холодильник, а он будет, охлаждая их, нагревать воздух в помещении. Пойдем на «крайности»… Расположим холодильник в оконном проеме открытой дверкой «морозилки» наружу. Радиатор холодильника будет находиться в помещении. В процессе работы холодильник будет охлаждать воздух на улице, перенося в помещение «забранную» теплоту. Так и работает тепловой насос, забирая рассредоточенное тепло у окружающей среды и перенося его в помещение.

Тепловой насос. Внешний воздушно-водяной контур

Где насос берет тепло?

Принцип работы теплового насоса базируется на «эксплуатации» естественных низкопотенциальных источников тепла из окружающей среды.

Распределение солнечной энергии

Ими могут быть:

  • просто наружный воздух;
  • тепло водоемов (озер, морей, рек);
  • тепло грунта, грунтовых вод (термальных и артезианских).
Геотермальный тепловой насос. Принцип работы

Как устроен тепловой насос и система отопления с ним?

Тепловой насос интегрирован в систему отопления, которая состоит из 2-х контуров + третий контур — система самого насоса. По внешнему контуру циркулирует незамерзающий теплоноситель, который забирает на себя тепло из окружающего пространства.

Попадая в тепловой насос, точнее его испаритель, теплоноситель отдает в среднем от 4 до 7 °C хладагенту теплового насоса. А его температура кипения составляет -10 °C. Вследствие этого хладагент закипает с последующим переходом в газообразное состояние. Теплоноситель внешнего контура, уже охлажденный уходит на следующий «виток» по системе для набора температуры.

В составе функционального контура теплового насоса «числятся»:

  • испаритель;
  • компрессор (электрический);
  • капилляр;
  • конденсатор;
  • хладагент;
  • терморегулирующее управляющее устройство.

Процесс выглядит приблизительно так!

«Закипевший» в испарителе хладагент по трубопроводу поступает в компрессор, работающих от электроэнергии. Этот «трудяга» сжимает газообразный хладагент до высокого давления, что, соответственно, приводит к повышению его температуры.

Теперь уже горячий газ далее попадает во другой теплообменник, который называется конденсатором. Здесь тепло хладагента передается воздуху помещения или теплоносителю, который циркулирует по внутреннему контуру системы отопления.

Хладагент остывает, одновременно переходя в состояние жидкости. Затем он проходит через капиллярный редукционный клапан, где «теряет» давление и вновь попадает в испаритель.

Цикл замкнулся и готов к повтору!

Приблизительный расчет теплопроизводительности установки

В течении часа по внешнему коллектору через насос протекает до 2,5-3 м3 теплоносителя, который земля способна нагреть на ∆t = 5-7 °C.

Для расчета тепловой мощности такого контура воспользуйтесь формулой:

[pmath size=14]Q = (T_1 — T_2)*V_тепл[/pmath]

где:

Как работает тепловой насос?

Разновидности тепловых насосов

По типу используемого вида рассеянного тепла различают тепловые насосы:

  • грунт-вода (используют закрытые грунтовые контуры или глубокие геотермальные зонды и водяную систему отопления помещения);
  • вода-вода (используют открытые скважины для забора и сброса грунтовых вод — внешний контур не закольцованный, внутренняя система отопления — водяная);
  • вода-воздух (использование внешних водяных контуров и системы отопления воздушного типа);
  • тепловой насос воздух-воздух (использование рассеянного тепла внешних воздушных масс в комплекте с воздушной системой отопления дома).
Схема и принцип действия теплового насоса

Преимущества и достоинства тепловых насосов

1

Экономичная эффективность. Принцип работы теплового насоса базируется не на производстве, а на переносе (транспортировке) тепловой энергии, то можно утверждать, что его КПД больше единицы. Что за чушь? — скажете Вы.В теме тепловых насосов фигурирует величина — коэффициент преобразования (трансформации) тепла (КПТ). Именно по этому параметру сравнивают между собой агрегаты подобного типа. Его физический смысл – показать отношение полученного количества теплоты к величине, затраченной для этого, энергии. К примеру, при КПТ = 4,8 затраченная насосом электроэнергия в 1кВт позволит получить с его помощью 4,8 кВт тепла безвозмездно, то есть даром от природы.

2

Универсальная повсеместность применения. Даже при отсутствии доступных линий электропередач работа компрессора теплового насоса может быть обеспечена дизельным приводом. А «природное» тепло есть в любом уголке планеты — тепловой насос «голодным» не останется.

Типичный компрессор холодильника- теплового насоса

3

Экологическая чистота использования. В тепловом насосе отсутствуют продукты горения, а его малое энергопотребление меньше «эксплуатирует» электростанции, косвенно снижая вредные выбросы от них. Хладагент, используемый в тепловых насосах, озонобезопасен и не содержит хлоруглеродов.

Внешний модуль теплового насоса «воздух-воздух»

4

Двунаправленный режим работы. Тепловой насос может в зимнее время обогревать помещение, а в летнее — охлаждать. Отобранную из помещения «теплоту» можно использовать эффективно, например, подогревать воду в бассейне или в системе ГВС.

Варианты режима работы теплового насоса

5

Безопасность эксплуатации. В принципе работы теплового насоса Вы не рассмотрите опасных процессов. Отсутствие открытого огня и вредных опасных для человека выделений, низкая температура теплоносителей делают тепловой насос «безобидным», но полезным бытовым прибором.

6

Полная автоматизация процесса отопления помещения.

Внешний воздушный контур теплового насоса

Некоторые нюансы эксплуатации

Эффективное использование принципа работы теплового насоса требует соблюдения нескольких условий:

  • помещение, которое обогревается должно быть хорошо утеплено (теплопотери до 100 Вт/м2) — иначе, забирая тепло с улицы, будете греть улицу за свои же деньги;
  • тепловые насосы выгодно применять для низкотемпературных систем отопления. Под такие критерии отлично подходят системы теплый пол (35-40 °C). Коэффициент преобразования тепла существенно зависит от соотношения температур входного и выходного контуров.

Подытожим сказанное!

Суть принципа работы теплового насоса не в производстве, а в переносе тепла. Это позволяет получить высокий коэффициент (от 3 до 5) преобразования тепловой энергии. Проще говоря, каждый использованный 1 кВт электроэнергии «перенесет» в дом 3-5 кВт тепла. Еще что-то нужно говорить?

plusteplo.ru

Схема и технология работы теплового насоса - Школа по утеплению дома

ГлавнаяОтопление в домеСхема и технология работы теплового насоса

31.08.2014

Сжигание классического топлива (газ, дрова, торф) является одним из древних способов получения тепла. Однако истощение традиционных источников энергии побудили человека искать более сложные, но не менее эффективные альтернативные варианты. Одним из ни стало изобретение теплового насоса, работа которого основана на школьных законах физики.

Работа теплового насоса

Очень сложный на первый взгляд принцип работы тепловых насосов базируется на нескольких простых законах термодинамики и свойствах жидкостей и газов:

  1. Когда газ переходит в жидкое состояние (конденсация), выделяется тепло
  2. Когда жидкость переходит в газ (испарение), поглощается тепло

Большинство жидкостей могут закипать при достаточно высоких температурах, близких к 100 градусам. Но встречаются вещества и с достаточно низкими температурами кипения. У фреона она около 3-4 градусов. Превращаясь в газ, он легко сжимается и внутри емкости начинает расти температура.

Теоретически фреон можно сжимать до получения любых желаемых температур, но на практике ограничиваются 80-90 градусами, необходимыми для полноценной работы классической системы отопления.

Видео о технологии работы

Схема теплового насоса

Работоспособность большинства тепловых насосов базируется на тепле грунта, в котором на протяжении года температура практически не колеблется (в пределах 7-10 градусов). Тепло перемещается между тремя контурами:

  1. Контур отопления
  2. Тепловой насос
  3. Рассольный (он же земляной) контур

Классический принцип работы тепловых насосов в отопительной системе состоит из следующих элементов:

  1. Теплообменник, отдающий внутреннему контуру тепло, забираемое у земли
  2. Сжимающее устройство
  3. Второе теплообменное устройство, передающее отопительной системе энергию, получаемую во внутреннем контуре
  4. Механизм, понижающий давление в системе (дросселе)
  5. Рассольный контур
  6. Земляной зонд
  7. Отопительный контур

Труба, которая выполняет роль первичного контура, помещается в колодец или закапывается непосредственно в землю. По ней перемещается незамерзающий жидкий теплоноситель, температура которого повышается до аналогичной характеристики земли (около +8 градусов) и поступает во второй контур.

Вторичный контур забирает тепло у жидкости. Циркулирующий внутри фреон начинает закипать и преобразовываться в газ, который направляется в компрессор. Поршень сжимает его до 24-28 атм, благодаря чему происходит увеличение температуры до +70-80 градусов.

На данном рабочем этапе происходит концентрирование энергии в один небольшой сгусток. Благодаря этому увеличивается температура.

Разогретый газ поступает в третий контур, который представлен системами горячего водоснабжения или даже отопления дома. При передаче тепла возможны потери до 10-15 градусов, но они оказываются не существенны.

Когда фреон остывает, происходит уменьшение давления, и он вновь превращается в жидкое состояние. При температуре 2-3 градуса он поступает обратно во второй контур. Цикл повторяется снова и снова.

Основные виды

Устроен принцип работы тепловых насосов так, чтоб они легко эксплуатировались без перебоев в широком диапазоне температур – от -30 до +40 градусов. Наибольшую популярность получили следующие два вида моделей:

  • Абсорбционного типа
  • Компрессионного типа

Абсорбционного типа модели имеют достаточно сложное устройство. Они передают полученную тепловую энергию непосредственно при помощи источника. Их эксплуатация значительно снижает материальные затраты на расходующиеся электричество и топливо. Компрессионного типа модели для переноса тепла потребляют энергию (механическую и электрическую).

В зависимости от применяемого теплового источника насосы подразделяются на следующие виды:

  1. Перерабатывающие вторичное тепло – самые дорогостоящие модели, получившие популярность для обогрева объектов в промышленности, в которых вторичное тепло, вырабатываемое другими источниками, расходуется в никуда
  2. Воздушные – забирающие тепло из окружающего воздуха
  3. Геотермальные – выбирают тепло из воды или земли

По видам входного/выходного теплоносителя все модели можно классифицировать следующим образом – грунт, вода, воздух и их различные сочетания.

Геотермальные тепловые насосы

Популярными являются геотермальные модели насосов, которые подразделяются на два вида: замкнутого или открытого типа.

Простое устройство открытых систем позволяет нагревать проходящую внутри воду, которая в последствии вновь поступает в землю. Идеально она работает при наличии неограниченного объема чистого жидкого теплоносителя, который после потребления не наносят вред среде.

Замкнутые системы геотермальных тепловых насосов делят на следующие разновидности:

  • Водный – коллектор располагается в водоеме на непромерзаемой глубине
  • С вертикальным расположением – коллектор помещается в скважину на глубину до 200 м и применим в местностях с неровным ландшафтом
  • С горизонтальным расположением – коллектор помещается в землю на глубину 0.5-1 м, очень важно обеспечить на ограниченной площади большой контур

Насос типа воздух-вода

Одним из наиболее универсальных вариантов является модель «воздух-вода». В теплые периоды года она весьма эффективна, но зимой производительность может существенно падать.

Преимуществом системы является простой монтаж. Подходящее оборудование может монтироваться в любом удобном месте, например, на крыше. Тепло, которые в виде газа или дыма удаляется из помещения, может использоваться повторно.

Тип вода-вода

Тепловой насос «вода-вода» один из самых эффективных. Но его использование может быть ограничено наличием поблизости водоема или недостаточной глубиной, на которой в зимний период не наблюдается существенного падения температуры.

Низко потенциальная энергия может выбираться из следующих источников:

  • Грунтовые вода
  • Водоемы открытого типа
  • Сточные промышленные воды

Наиболее прост принцип работы тепловых насосов у моделей, отбирающих тепло в водоеме. Если принято решение использовать подземные воды, может потребоваться бурение колодца.

Тип грунт-вода

Тепло из грунта можно получать на протяжении всего года, так как на глубинах от 1 м температура практически не меняется. В качестве носителя тепла используют «рассол» — незамерзающую жидкость, которая циркулирует по пластиковым трубам.

Один из недостатков системы «грунт-вода» — необходимость большой площади для достижения желаемой эффективности. Нивелировать его стараются укладкой труб кольцами.

Коллектор можно располагать в вертикальном положении, но потребуется скважина глубиной до 150 м. На дне монтируются зонты, отбирающие тепло грунта.

Плюсы и минусы отопительных систем с тепловым насосом

Тепловые насосы нашли широкое применение в системах отопления частной жилой площади или промышленных площадей. Они постепенно вытесняют более классические источники энергии благодаря надежности и экономичности.

Среди многочисленных преимуществ, которые предоставляет эксплуатация теплового насоса, выделяют:

  • Экономия материальных средств на техническом обслуживании систем и теплоносителе
  • Насосы работают полностью в автономном режиме
  • В окружающую среду не выделяются вредные продукты горения и прочие токсичные вещества
  • Пожаробезопасность монтируемого оборудования
  • Возможность легко реверсировать работу системы

Несмотря на массу преимуществ, необходимо принять во внимание и отрицательные стороны эксплуатации теплового насоса:

  • Большие первоначальные вложения на обустройства отопительной системы – от 3 до 10 тысяч долларов
  • В холодные периоды, когда температура отпускается ниже -15 градусов, необходимо подумать об альтернативных вариантах отопления
  • Отопление, основанное на работе теплового насоса, наиболее эффективно только в системах низкотемпературным теплоносителем

Еще одно схематичное видео:

Подводим итоги

Узнав и освоив принцип работы теплового насоса, можно подумать и принять решение о целесообразности его установки и использования. Первоначальные затраты, которые могут показаться очень масштабными, в скором времени окупятся и начнут приносить своеобразную прибыль в виде экономии на классическом топливе.

v-teplo.ru

Тепловые насосы для дома: особенности технологии, сфера применения и стоимость оборудования

Для прочтения нужно: 3 мин.

Тепловые насосы успешно используются в быту и промышленности в Европе и США уже более 25 лет. Их особенность состоит в преобразовании так называемого низкопотенциального тепла окружающей среды: земли, воды, воздуха. На российском рынке эта экологичная технология получила распространение сравнительно недавно.

Экспериментальные поселки, которые отапливались при помощи тепловых насосов, существовали еще в Советском Союзе. То, что было смелым экспериментом в двадцатом веке, в двадцать первом – вошло в практику.

Устройство и принцип работы бытового теплонасоса

Тепловой насос – это система, с помощью которой можно переносить тепло от менее нагретого тела к более нагретому, увеличивая температуру последнего. Тепловые насосы являются альтернативными источниками энергии, позволяющими получать дешевое тепло без вреда для окружающей среды.

Принцип работы бытового теплонасоса основан на том факте, что любое тело с температурой выше абсолютного нуля обладает запасом тепловой энергии. Этот запас прямо пропорционален массе и удельной теплоемкости тела. Если в этом контексте обратить внимание, например, на моря, океаны, подземные воды, обладающие огромной массой, можно прийти к выводу, что их грандиозные запасы тепловой энергии можно частично использовать для отопления домов без ущерба мировой экологической обстановке. «Взять» тепловую энергию какого-либо тела можно, если охладить его. Грубый расчет выделяемого при этом тепла возможен по формуле: Q = C*M*(T2 − T1), где Q − полученное тепло, C − теплоемкость, M – масса, T1 − T2 − температура, на которую было произведено охлаждение тела. Формула показывает, что при росте массы теплоносителя разница температур может быть небольшой. Например, охлаждая 1 кг теплоносителя от 1000 до 0 o С, можно получить столько же тепла, сколько даст охлаждение 1000 кг от 1 до 0 o С.

Типы тепловых насосов

По виду передачи энергии тепловые насосы бывают двух типов:

  • Компрессионные . Основные элементы установки – это компрессор, конденсатор, расширитель и испаритель. Используется цикл сжимания-расширения теплоносителя с выделением тепла. Этот тип тепловых насосов прост, высокоэффективен и наиболее популярен.
  • Абсорбционные . Это теплонасосы нового поколения, использующие в качестве рабочего тела пару абсорбент-хладон. Применение абсорбента повышает эффективность работы теплового насоса.

По источнику тепла выделяют тепловые насосы:

  • Геотермальные . Тепловая энергия берется из грунта или воды.
  • Воздушные . Тепло извлекается из атмосферы.
  • Использующие вторичное тепло . В качестве источника тепла используются воздух, вода, канализационные стоки.

По виду теплоносителя входного/выходного контура:

  • Тепловые насосы «воздух-воздух» . Этот вид тепловых насосов забирает тепло у более холодного воздуха, еще больше понижая его температуру, и отдает его в отапливаемое помещение.
  • Тепловые насосы «вода-вода» . Используется тепло грунтовых вод, которое передается воде для отопления и горячего водоснабжения.
  • Тепловые насосы «вода-воздух» . Используются зонды или скважины для воды и воздушная система отопления.
  • Тепловые насосы «воздух-вода» . Атмосферное тепло используется для водяного отопления.
  • Тепловые насосы «грунт-вода» . Трубы прокладываются под землей, и по ним циркулирует вода, забирающая тепло из грунта.
  • Тепловые насосы «лед-вода» . Для нагревания воды в системе отопления и горячего водоснабжения используется тепловая энергия, которая высвобождается при получении льда. Замораживание 100-200 л воды способно обеспечить обогрев среднего дома в течение часа.

Расчет эффективности тепловых насосов для отопления

Для того чтобы тепловой насос был эффективным, он должен давать тепловой энергии больше, чем потреблять электрической. Это соотношение называется коэффициентом преобразования. Коэффициент преобразования может меняться в зависимости от разницы температур входного и выходного контура. Чем холоднее снаружи, тем менее эффективна система. Для разных типов тепловых насосов коэффициент преобразования может варьироваться от 1 до 5. Для объективной оценки теплового насоса требуется дополнительный параметр годовой эффективности.

Эффективность конкретного теплового насоса будет зависеть от множества факторов, и ее расчет достаточно сложен. Дать обобщенную формулу, которая бы работала всегда, практически невозможно. Поэтому каждый конкретный случай требует обращения к экспертам, которые в зависимости от поставленной задачи и ее условий подберут необходимый тип теплового насоса и объем хладагента.

Сферы применения и степень распространения

Тепловые насосы востребованы прежде всего в случаях, когда другие способы организации системы отопления обходятся значительно дороже. Растущая распространенность тепловых насосов на производстве и в быту связана со следующими их преимуществами:

  • Экономичность . Для передачи в отопительную систему 1 кВт•ч тепловой энергии, установке требуется в среднем затратить всего 0,2-0,35 кВт•ч электроэнергии.
  • Простота эксплуатации.
  • Упрощение требований к системам вентиляции помещений, повышение уровня пожарной безопасности.
  • Возможность переключения с зимнего режима отопления на летний режим кондиционирования.
  • Компактность и бесшумность , что делает тепловой насос привлекательным для отопления частного дома.

По данным Европейской ассоциации тепловых насосов, до недавнего времени европейский рынок этого оборудования был в основном сосредоточен во Франции. В последние несколько лет рынки стали расширяться в Германии, Великобритании и Восточной Европе. По оценке Мирового энергетического комитета, уже в ближайшие пять лет доля отопления и горячего водоснабжения от тепловых насосов будет составлять в развитых странах не менее 75%.

Общий недостаток тепловых насосов – не очень высокая температура нагреваемой воды. Как правило, она составляет 50-60 o С.

Это интересно!

Впервые в Москве теплонасосная система горячего водоснабжения для многоэтажного дома была сдана в эксплуатацию в микрорайоне Никулино-2 в 2002 г. Проект был реализован при участии Министерства обороны РФ.

Стоимость оборудования

Традиционное решение для частных домов и коттеджей – газовое отопление. Однако вариант теплового насоса значительно выгоднее и удобнее. Чтобы установить газовый котел, требуются специальный дымоход, вентиляция, а также целый набор разрешительных документов. Применение тепловых насосов избавит вас от этих проблем и существенно сэкономит ваши средства. Чтобы провести газ в Подмосковье, потребуется около $20 000, и это в том случае, если ваш дом удален от газопровода менее, чем на 1 км, – иначе затраты вырастут в несколько раз! Помимо этого, придется учесть скорость работы отечественных газовщиков. Установка теплового насоса «под ключ» стоит от $15 000, а работы занимают всего 2-3 недели.

Из всего вышесказанного можно сделать однозначный вывод: использование тепловых насосов – это эффективное, простое в монтаже, экологичное и экономичное решение для организации отопления и горячего водоснабжения в частном доме.

www.kp.ru

Тепловой насос для отопления дома: принцип работы, разновидности и использование

В условиях ухудшения экологической обстановки в мире и (что более актуально для рядового потребителя) стремительного роста тарифов на газ и электричество все больше европейцев старается внедрить в свою повседневную жизнь системы, использующие альтернативные источники энергии. Один из вариантов подобных систем – так называемый тепловой насос, посредством которого можно отапливать свое жилище в зимний период и нагревать воду для бытовых нужд, расходуя на это минимум электроэнергии.

В домах наших соотечественников в последние годы тоже все чаще можно встретить это чудо инженерной мысли. Конечно, для россиян проблема высоких цен на традиционные энергоносители пока стоит не так остро, как в Европе, но, во-первых, это лишь до поры до времени, а во-вторых, не хочется отставать от цивилизованного мира…

Итак, тепловой насос… Что это такое? На чем основан принцип его действия? Откуда, куда и как он перекачивает тепло? Давайте разбираться.

Принцип действия тепловых насосов основан на способности вещества (хладагента) поглощать или отдавать тепло при изменении агрегатного состояния. По своей сути такие насосы мало чем отличаются от холодильных установок. (Это странное, на первый взгляд, утверждение нисколько вас не удивит, если вы хоть раз дотрагивались до горячей задней стенки обычного бытового холодильника.)

Схематично тепловой насос может быть представлен в виде системы, состоящей из трех контуров. В первом находится теплоноситель, переносящий энергию от источника низкопотенциального тепла. Во втором контуре циркулирует хладагент (фреон), который периодически то испаряется, отбирая тепло у первого контура, то вновь конденсируется, отдавая его третьему контуру. И, наконец, по третьему контуру «бегает» теплоприемник, в нашем случае – вода, переносящая тепло по системе отопления.

Рабочий цикл теплонасоса в общих словах может быть описан следующим образом. Жидкий хладагент поступает в испаритель, где переходит в газообразное состояние. Необходимая для протекания этого процесса энергия отбирается у теплоносителя, циркулирующего в первом контуре. Далее подогретый на несколько градусов газообразный хладагент всасывается в компрессор, главное назначение которого – сжатие газа (на совершение этой работы, разумеется, расходуется электроэнергия).

Давление газа возрастает в несколько раз, при этом он существенно разогревается: если на входе в компрессор температура хладагента составляет 6-10°C, то на выходе уже около 60°C. На следующей стадии разогретый газ направляется в конденсатор, где отдает полученное тепло системе отопления, сам же при этом конденсируется, т.е. переходит в жидкое состояние. Затем избыточное давление сбрасывается с помощью дроссельного клапана, и цикл начинается заново.

Как видите, устройство теплового насоса не отличается принципиально от устройства холодильной машины. Просто основным назначением холодильных установок является генерирование холода, поэтому там отбор теплоты производится испарителем, а конденсатор лишь сбрасывает эту теплоту в окружающее пространство. В тепловом же насосе картина обратная: конденсатор представляет собой теплообменный аппарат, отдающий теплоту потребителю, а испаритель – это теплообменник, утилизирующий низкопотенциальную теплоту вторичных энергоресурсов.

Другими словами тепловой насос – это «холодильник наоборот». При этом «наоборот» не только устройство, но и результат. Если в случае холодильника тепло, отнимаемое у хранящихся внутри продуктов, выбрасывается впустую, то энергия, вырабатываемая тепловым насосом, приносит реальную пользу – тратится на целенаправленный обогрев дома.

Разновидности тепловых насосов и систем

Тепловая энергия, расходуемая на отопление здания и систему горячего водоснабжения, является результатом преобразования энергии окружающей среды, осуществляемого с помощью теплового насоса. Насос концентрирует эту низкопотенциальную (низкотемпературную) энергию и передает ее системе отопления.

Осталось разобраться, что в данном случае подразумевается под энергией окружающей среды. Большинство тепловых насосов бытового назначения позволяют использовать тепло Солнца и внутреннее тепло Земли, накапливаемые верхними слоями земной коры и водой в течение всего года.

По типу конструкции первого контура теплообменника все тепловые насосы делятся на грунтовые, водяные и воздушные.

Грунтовые тепловые насосы

Грунтовые тепловые насосы получают тепло, необходимое для подогрева хладагента в испарителе, от грунта. Температура последнего на глубине нескольких метров практически не подвержена сезонным колебаниям. По замкнутой системе труб, размещенных в грунте, циркулирует «рассол». Слово «рассол» мы не случайно взяли в кавычки: соли, как этого можно было бы ожидать исходя из названия, он не содержит. На самом деле это антифриз на основе этиленгликоля или пропиленгликоля, реже водного этанола. Трубы теплообменника могут быть уложены в грунте как горизонтальным (горизонтальный коллектор), так и вертикальным (геотермальный зонд) способом.

Трубы горизонтального коллектора укладываются в землю на глубине ниже уровня промерзания грунта в данном регионе (обычно 1.5-2 м). Теплообменная система этого вида занимает достаточно большую площадь. Например, для обеспечения теплом сравнительно небольшого дома площадью 100 м2 потребуется выделить 2-3 сотки земли. Следует принять во внимание, что на территории, занятой коллектором, можно садить лишь те деревья и кустарники, корни которых не уходят в почву слишком глубоко, а располагать здесь какие-либо постройки и вовсе нельзя.

Геотермальный зонд – это теплообменник, трубы которого располагаются вертикально и погружены в грунт на глубину до 100-200 м. Количество устанавливаемых зондов зависит от требуемой мощности установки. Для обогрева дома, уже рассматриваемого нами выше в качестве примера, достаточно будет двух зондов длиной около 80 м, расположенных на расстоянии 5 м друг от друга.

Как видите, для размещения этой системы не требуется больших площадей, вы можете пробурить скважины в любой части вашего участка – там, где вам это удобно. Главный недостаток грунтовых тепловых насосов с геотермальными зондами – высокая стоимость работ по бурению скважин. Однако, невзирая на это, большинство пользователей отдает предпочтение именно этим системам, ведь геотермальные зонды обладают большей эффективностью, чем горизонтальные коллекторы, и имеют при этом меньше ограничений.

Бурение скважины для геотермального зонда.

Водяные тепловые насосы

Водяной тепловой насос «черпает» энергию грунтовых вод, которые прокачивает через свой испаритель. Подобная система отличается повышенной эффективностью и неплохой стабильностью: первая характеристика является результатом высокой теплоотдачи воды, вторая обусловлена постоянством температуры грунтовых вод.

Разумеется, чтобы использовать установку такого типа, требуется, чтобы эти самые грунтовые воды имелись на вашей территории, причем в достаточно большом количестве. Очень желательно, чтобы водоносный слой располагался не глубже 30-40 м. Одновременное выполнение этих двух условий – явление нечастое. Еще одним условием, невыполнение которого может стать препятствием для установки водяного теплонасоса в вашем доме или коттедже, является низкое содержание в грунтовых водах солей железа и прочих примесей.

Использование воды низкого качества приведет к тому, что оборудование быстро выйдет из строя, поскольку теплообменник попросту забьется. Наличие такого количества ограничений является причиной того, что подобные тепловые насосы, несмотря на всю их привлекательность, устанавливают нечасто (около 5% от всех реализованных проектов).

Воздушные тепловые насосы

С точки зрения простоты монтажа воздушные тепловые насосы обладают огромным преимуществом перед своими «собратьями». Для использования окружающего воздуха в качестве источника тепла вам не придется бурить скважины или проводить какие-то другие крупномасштабные грунтовые работы. В результате, если заложить в смету стоимость работ по установке оборудования, воздушный насос обойдется вам значительно дешевле, чем водяной или грунтовый.

Несмотря на столь весомое достоинство, идеальным этот вид климатического оборудования не назовешь, поскольку есть у него и существенный недостаток. Такой насос эффективно работает лишь при температуре окружающего воздуха выше –15°C…–20°C. Падение температуры ниже этой границы, что в зимний период не является редкостью в большинстве регионов нашей страны, ведет к существенному уменьшению коэффициента эффективности воздушного теплонасоса.

Коэффициент эффективности тепловых насосов

Чуть выше мы использовали новый термин – «коэффициент эффективности». Было бы неправильно не пояснить, что это такое, тем более что это важная характеристика тепловых насосов, позволяющая сравнивать насосы разных типов между собой.

Коэффициент эффективности (называемый также коэффициентом трансформации) – это отношение выработанной насосом тепловой энергии к потребленной им электрической. По сути это КПД теплового насоса. В случае водяных теплонасосов этот коэффициент равен 5 вне зависимости от времени года. Это означает, что при потреблении 1 кВт*ч электроэнергии установка вырабатывает 5 кВт*ч тепловой энергии.

У грунтовых насосов величина коэффициента эффективности чуть ниже – от 4 до 4.5. И, наконец, самым маленьким коэффициентом характеризуются воздушные тепловые насосы, при этом их эффективность сильно зависит от температуры окружающего воздуха: при 0°C величина коэффициента равна ~3.5, а при –20°C он уже не превышает 1.5 (при такой низкой эффективности насос попросту не окупится, и имеет смысл подумать о приобретении более дешевого климатического оборудования, например электрического котла).

Некоторые менеджеры, рекламируя реализуемые ими тепловые насосы, уверяют потенциальных клиентов в том, что данное оборудование имеет КПД 400-500%. Разумеется, ни о каком нарушении законов термодинамики речи не идет. Просто в данном случае расчеты намеренно делаются неправильно: не учитываются источники энергии, отличные от потребляемого электричества, – воздух, вода или грунт, нагретые Солнцем и геотермальными процессами. Когда при расчете КПД учитывают только электроэнергию и забывают про источник низкопотенциального тепла, как раз и получается величина больше 100%.

Применение тепловых насосов в условиях российского климата

Познакомившись с приведенными выше описаниями различных типов тепловых насосов, вы без труда сами сможете ответить на вопрос, какой насос больше всего подходит для эксплуатации в условиях российского климата.

Воздушные тепловые насосы пригодны для применения лишь в ограниченном числе регионов нашей страны – там, где температура воздуха зимой почти не опускается ниже нулевой отметки. Разумеется, жителям Сибири, Дальнего Востока, севера европейской части России о воздушных тепловых насосах не стоит и размышлять.

Для применения водяных тепловых насосов есть много ограничений. О некоторых из них мы уже рассказывали, осталось упомянуть еще об одном. Более половины территории нашей страны находится в зоне вечной мерзлоты. Если даже какому-нибудь жителю Восточной Сибири или севера Дальнего Востока «повезло», и на его участке есть грунтовые воды, залегающие не слишком глубоко, то все равно эти грунтовые воды находятся в виде льда, а значит, не пригодны для использования в системе отопления.

Таким образом, большинству наших соотечественников приходится рассчитывать на единственный, беспроигрышный, вариант – грунтовый тепловой насос. При этом в условиях российского климата больше подойдет насос не с горизонтальным коллектором, а с геотермальным зондом, позволяющим достигнуть глубины, где температура грунта более стабильна.

Применение теплового насоса для охлаждения

Огромным достоинством тепловых насосов является то, что они способны не только отапливать дом, но и при необходимости охлаждать его. Наше короткое российское лето порою бывает очень жарким, и, когда ваше жилище буквально раскаляется, предложение превратить обогреватель в кондиционер будет очень кстати.

Техническое решение этого вопроса может быть интегрировано в тепловой насос изначально, на стадии изготовления, и практически у всех производителей имеются линейки насосов, умеющих кондиционировать помещение (режим Natural Cooling). Если ваш тепловой насос не обладает такими способностями, не все еще потеряно – работать на охлаждение может и обычный насос. Необходимое для этого дополнительное оборудование в виде гидравлической развязки будет смонтировано вне насоса. Оба варианта не требуют больших капиталовложений.

Нести генерируемый тепловым насосом холод непосредственно в помещение можно разными способами. Эта функция может быть возложена на холодные панели на стенах или потолке, охлаждающий теплый пол, радиаторы отопления с хорошим обдувом или же фанкойл – устройство, в чей корпус встроен обдуваемый вентилятором пластинчатый теплообменник.

Применение теплового насоса для горячего водоснабжения

Любой тепловой насос способен не только обогревать ваше жилище, но и круглогодично снабжать вас горячей водой. Однако следует учитывать, что эта система является низкотемпературной, а значит, температура воды в бойлере не превысит 45-55°C. Из этого следует, что объем бойлера должен быть больше, чем при использовании стандартной системы отопления, в противном случае вам и вашим домочадцам придется жить в условиях жесткой экономии горячей воды.

Данный факт следует учитывать при выделении площади для котельной, т. е. еще на стадии проектирования дома. Также при выборе бойлера нужно принимать во внимание, что это должно быть специальное оборудование, рассчитанное на работу с теплонасосными установками. Главное отличие такого бойлера от обычного – увеличенная площадь теплообменника, необходимая для максимально эффективной передачи тепла от теплового насоса.

Тепловые насосы со встроенным ТЭНом

Нередко производители встраивают в свои тепловые насосы дополнительные электрические нагреватели. Встроенный ТЭН позволяет в случае необходимости перейти на альтернативный с точки зрения теплового насоса источник энергии – электричество. Для чего это нужно? В каких случаях возникает потребность задействовать ТЭН?

Подбор теплового насоса для отопления дома осуществляется с учетом различных параметров, в том числе и климатических особенностей региона. При этом считается нецелесообразным устанавливать насос с избыточной мощностью. Дело в том, что экстремально холодные дни случаются не так уж и часто, по крайней мере, в центрально-европейской части России. Практика показывает, что более экономичным вариантом будет «добрать» в эти морозные периоды необходимую мощность электричеством, чем изначально устанавливать более мощный насос. Наличие ТЭНа исключает необходимость делать систему более мощной, чем это требуется большую часть отопительного сезона.

Для владельцев водяных и грунтовых тепловых насосов встроенный ТЭН – скорее излишество, чем необходимость. Совсем иначе выглядит ситуация с воздушными теплонасосами. При температуре воздуха –20°C и ниже такой насос, если и не отключится, будет малоэффективен. И пусть холодных дней и ночей в году не очень много, совсем не хочется в один прекрасный момент остаться в стремительно вымерзающем доме. Наличие дублирующего теплогенератора в данном случае никак не назовешь роскошью.

Воздушный тепловой насос.

Советы и рекомендации

Тепловой насос – оборудование технически сложное и достаточно дорогое, поэтому подходить к его выбору следует с большой ответственностью. Чтобы не быть голословными, приведем несколько вполне конкретным рекомендаций.

1. Никогда не приступайте к выбору теплового насоса без предварительного проведения расчетов и создания проекта. Отсутствие проекта может стать причиной фатальных ошибок, исправить которые можно будет лишь с помощью огромных дополнительных финансовых вложений.

2. Доверить проектирование, монтаж и сервисное обслуживание теплового насоса и системы отопления следует только профессионалам. Как убедиться в том, что в данной компании работают профессионалы? В первую очередь, по наличию всей необходимой документации, портфолио реализованных объектов, сертификатов от поставщиков оборудования. Очень желательно, чтобы весь комплекс необходимых услуг предоставляла одна компания, которая в данном случае будет нести полную ответственность за реализацию проекта.

3. Советуем вам отдать предпочтение тепловому насосу европейского производства. Пусть вас не смущает тот факт, что он дороже китайского или российского оборудования. При включении в смету стоимости работ по монтажу, запуску и отладке всей системы отопления разница в цене насосов будет практически незаметна. Но зато, имея в своем распоряжении «европейца», вы будете уверены в его надежности, поскольку высокая цена насоса – это лишь результат использования при его создании современных технологий и высококачественных материалов.

srbu.ru


Смотрите также

Марка бетона
Класс бетона по прочности на сжатие
Цена ( руб/куб)
B-7,5
2950
B-12,5
3100
B-15
3200
B-20
3400
B-22.5
3700
B-25
4000